Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.206
Filtrar
1.
Cell Death Dis ; 15(3): 218, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490994

RESUMO

Gastric cancer (GC), notorious for its poor prognosis, often advances to peritoneal dissemination, a crucial determinant of detrimental outcomes. This study intricately explores the role of the TGFß-Smad-LIF axis within the tumor microenvironment in propagating peritoneal metastasis, with a specific emphasis on its molecular mechanism in instigating Neutrophil Extracellular Traps (NETs) formation and encouraging GC cellular functions. Through a blend of bioinformatics analyses, utilizing TCGA and GEO databases, and meticulous in vivo and in vitro experiments, LIF was identified as pivotally associated with GC metastasis, notably, enhancing the NETs formation through neutrophil stimulation. Mechanistically, TGF-ß was substantiated to elevate LIF expression via the activation of the Smad2/3 complex, culminating in NETs formation and consequently, propelling peritoneal metastasis of GC. This revelation uncovers a novel potential therapeutic target, promising a new avenue in managing GC and mitigating its metastatic propensities.


Assuntos
Armadilhas Extracelulares , Neoplasias Peritoneais , Neoplasias Gástricas , Fator de Crescimento Transformador beta , Humanos , Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/patologia , Neoplasias Gástricas/patologia , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Fator Inibidor de Leucemia/metabolismo , Transdução de Sinais
2.
Sci Rep ; 14(1): 7081, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528099

RESUMO

In this article, we focused on the impact of precisely chemically modified FLI maturation medium enriched with fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF), insulin-like growth factor 1 (IGF1), and polyvinyl alcohol (PVA) and its potential to improve the efficiency of in vitro production of porcine embryos. We hypothesized that enhancing the composition of the maturation medium could result in an elevated production of embryos in vitro and can affect EGA. FLI medium resulted in a significantly higher rate of oocyte blastocyst maturation and formation compared to the control DMEM medium. In addition, immunocytochemical labelling confirmed the detection of UBF in 4-cell FLI parthenogenic embryos, suggesting similarities with natural embryo development. Through RNAseq analysis, upregulated genes present in 4-cell FLI embryos were found to play key roles in important biological processes such as cell proliferation, cell differentiation, and transcriptional regulation. Based on our findings, we demonstrated the positive influence of FLI medium in the evaluation of in vitro embryo production, EGA detection, transcriptomic and proteomic profile, which was confirmed by the positive activation of the embryonal genome in the 4-cell stage of parthenogenetically activated embryos.


Assuntos
Meios de Cultura , Fator 2 de Crescimento de Fibroblastos , Fator de Crescimento Insulin-Like I , Fator Inibidor de Leucemia , Animais , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Meios de Cultura/química , Meios de Cultura/farmacologia , Fertilização In Vitro , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator Inibidor de Leucemia/farmacologia , Oócitos , Proteômica , Suínos/embriologia , Suínos/genética , Fator de Crescimento Insulin-Like I/farmacologia
3.
Biochem Pharmacol ; 223: 116134, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494064

RESUMO

The leukemia inhibitory factor (LIF) is member of interleukin (IL)-6 family of cytokines involved immune regulation, morphogenesis and oncogenesis. In cancer tissues, LIF binds a heterodimeric receptor (LIFR), formed by a LIFRß subunit and glycoprotein(gp)130, promoting epithelial mesenchymal transition and cell growth. Bile acids are cholesterol metabolites generated at the interface of host metabolism and the intestinal microbiota. Here we demonstrated that bile acids serve as endogenous antagonist to LIFR in oncogenesis. The tissue characterization of bile acids content in non-cancer and cancer biopsy pairs from gastric adenocarcinomas (GC) demonstrated that bile acids accumulate within cancer tissues, with glyco-deoxycholic acid (GDCA) functioning as negative regulator of LIFR expression. In patient-derived organoids (hPDOs) from GC patients, GDCA reverses LIF-induced stemness and proliferation. In summary, we have identified the secondary bile acids as the first endogenous antagonist to LIFR supporting a development of bile acid-based therapies in LIF-mediated oncogenesis.


Assuntos
Interleucina-6 , Receptores de Citocinas , Humanos , Carcinogênese , Fator Inibidor de Leucemia/metabolismo , Receptores de Citocinas/metabolismo , Receptores de OSM-LIF
4.
Endocrinology ; 165(5)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38518755

RESUMO

Seminal extracellular vesicles (EVs) contain different subgroups that have diverse effects on sperm function. However, the effect of seminal EVs-especially their subgroups-on endometrial receptivity is largely unknown. Here, we found that seminal EVs could be divided into high-density EVs (EV-H), medium density EVs, and low-density EVs after purification using iodixanol. We demonstrated that EV-H could promote the expression and secretion of leukemia inhibitor factor (LIF) in human endometrial cells. In EV-H-treated endometrial cells, we identified 1274 differentially expressed genes (DEGs). DEGs were enriched in cell adhesion and AKT and STAT3 pathways. Therefore, we illustrated that EV-H enhanced the adhesion of human choriocarcinoma JAr cell spheroids to endometrial cells through the LIF-STAT3 pathway. Collectively, our findings indicated that seminal EV-H could regulate endometrial receptivity through the LIF pathway, which could provide novel insights into male fertility.


Assuntos
Implantação do Embrião , Vesículas Extracelulares , Feminino , Humanos , Masculino , Gravidez , Adesão Celular/fisiologia , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Vesículas Extracelulares/metabolismo , Fator Inibidor de Leucemia/metabolismo , Sêmen/metabolismo
5.
Nat Commun ; 15(1): 627, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245529

RESUMO

Cancer cachexia is a systemic metabolic syndrome characterized by involuntary weight loss, and muscle and adipose tissue wasting. Mechanisms underlying cachexia remain poorly understood. Leukemia inhibitory factor (LIF), a multi-functional cytokine, has been suggested as a cachexia-inducing factor. In a transgenic mouse model with conditional LIF expression, systemic elevation of LIF induces cachexia. LIF overexpression decreases de novo lipogenesis and disrupts lipid homeostasis in the liver. Liver-specific LIF receptor knockout attenuates LIF-induced cachexia, suggesting that LIF-induced functional changes in the liver contribute to cachexia. Mechanistically, LIF overexpression activates STAT3 to downregulate PPARα, a master regulator of lipid metabolism, leading to the downregulation of a group of PPARα target genes involved in lipogenesis and decreased lipogenesis in the liver. Activating PPARα by fenofibrate, a PPARα agonist, restores lipid homeostasis in the liver and inhibits LIF-induced cachexia. These results provide valuable insights into cachexia, which may help develop strategies to treat cancer cachexia.


Assuntos
Caquexia , Neoplasias , Animais , Camundongos , Caquexia/genética , Caquexia/metabolismo , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Lipídeos , Lipogênese/genética , Fígado/metabolismo , Camundongos Transgênicos , Neoplasias/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo
6.
F S Sci ; 5(1): 92-103, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37972693

RESUMO

OBJECTIVE: To study the effect of adenomyosis on the localized expression of the GATA binding proteins 2 and 6 (GATA2 and GATA6) zinc-finger transcription factors that are involved in proliferation of hematopoietic and endocrine cell lineages, cell differentiation, and organogenesis, potentially leading to impaired endometrial implantation. DESIGN: Laboratory based experimental study. SETTING: Academic hospital and laboratory. PATIENTS: Human endometrial stromal cells (HESCs) of reproductive age patients, 18-45 years of age, with adenomyosis were compared with patients with no pathology and leiomyomatous uteri as controls (n = 4 in each group, respectively). Additionally, midsecretory phase endometrial sections were obtained from patients with adenomyosis and control patients with leiomyoma (n = 8 in each group, respectively). INTERVENTIONS: GATA2 and GATA6 immunohistochemistry and H-SCORE were performed on the midsecretory phase endometrial sections from adenomyosis and leiomyoma control patients (n = 8 each, respectively). Control and adenomyosis patient HESC cultures were treated with placebo or 10-8 M estradiol (E2), or decidualization media (EMC) containing 10-8 M E2, 10-7 M medroxyprogesterone acetate, and 5 × 10-5 M cAMP for 6 and 10 days. Additionally, control HESC cultures (n = 4) were transfected with scrambled small interfering RNA (siRNA) (control) or GATA2-specific siRNAs for 6 days while adenomyosis HESC cultures (n = 4) were transfected with human GATA2 expression vectors to silence or induce GATA2 overexpression. MAIN OUTCOME MEASURES: Immunohistochemistry was performed to obtain GATA2 and GATA6 H-SCORES in adenomyosis vs. control patient endometrial tissue. Expression of GATA2, GATA6, insulin-like growth factor-binding protein 1 (IGFBP1), prolactin (PRL), progesterone receptor (PGR), estrogen receptor 1 (ESR1), leukemia inhibitory factor (LIF), and Interleukin receptor 11 (IL11R) messenger RNA (mRNA) levels were analyzed using by qPCR with normalization to ACTB. Silencing and overexpression experiments also had the corresponding mRNA levels of the above factors analyzed. Western blot analysis was performed on isolated proteins from transfection experiments. RESULTS: Immunohistochemistry revealed an overall fourfold lower GATA2 and fourfold higher GATA6 H-SCORE level in the endometrial stromal cells of patients with adenomyosis vs. controls. Decidual induction with EMC resulted in significantly lower GATA2, PGR, PRL and IGFBP1 mRNA levels in HESC cultures from patients with adenomyosis patient vs. controls. Leukemia inhibitory factor and IL11R mRNA levels were also significantly dysregulated in adenomyosis HESCs compared with controls. . Silencing of GATA2 expression in control HESCs induced an adenomyosis-like state with significant reductions in GATA2, increases in GATA6 and accompanying aberrations in PGR, PRL, ESR1 and LIF levels. Conversely, GATA2 overexpression via vector in adenomyosis HESCs caused partial restoration of the defective decidual response with significant increases in GATA2, PGR, PRL and LIF expression. CONCLUSION: In-vivo and in-vitro experiment results demonstrate that there is an overall inverse relationship between endometrial GATA2 and GATA6 levels in patients with adenomyosis who have diminished GATA2 levels and concurrently elevated GATA6 levels. Additionally, lower GATA2 and higher GATA6 levels, together with aberrant levels of important receptors and implantation factors, such as ESR1, PGR, IGFBP1, PRL, LIF, and IL11R mRNA in HESCs from patients with adenomyosis or GATA2-silenced control HESCs, support impaired decidualization. These effects were partially restored with GATA2 overexpression in adenomyosis HESCs, demonstrating a potential therapeutic target.


Assuntos
Adenomiose , Fator de Transcrição GATA2 , Fator de Transcrição GATA6 , Adolescente , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Adenomiose/genética , Adenomiose/metabolismo , Adenomiose/patologia , Decídua/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA2/farmacologia , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Fator de Transcrição GATA6/farmacologia , Leiomioma , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/farmacologia , Prolactina/metabolismo , Prolactina/farmacologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Fatores de Transcrição
7.
Inflammation ; 47(1): 307-322, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37782452

RESUMO

Leukemia inhibitory factor (LIF) has been recognized as a novel inflammatory modulator in inflammation-associated diseases. This study aimed to investigate the modulation of LIF in dental pulp inflammation. Experimental pulpitis was established in wild-type (WT) and Lif-deficient (Lif-/-) mice. Histological and immunostaining analyses were conducted to assess the role of LIF in the progression of pulpitis. Mouse macrophage cell line (RAW264.7) was treated with LPS to simulate an inflammatory environment. Exogenous LIF was added to this system to examine its modulation in macrophage inflammatory response in vitro. Primary bone marrow-derived macrophages (BMDMs) from WT and Lif-/- mice were isolated and stimulated with LPS to confirm the effect of Lif deletion on macrophage inflammatory response. Supernatants from LIF and LPS-treated human dental pulp cells (hDPCs) were collected and added to macrophages. Macrophage chemotaxis was assessed using transwell assays. The results showed an increased expression of LIF and LIFR with the progression of pulpitis, and LIFR was highly expressed in macrophages. Lif deficiency alleviated experimental pulpitis with the reduction of pro-inflammatory cytokines and macrophage infiltration. Exogenous LIF promoted inflammatory response of LPS-induced macrophages through a STAT3/p65-dependent pathway. Consistently, Lif deletion inhibited macrophage inflammatory response in vitro. Supernatants of LIF-treated hDPCs enhanced macrophage migration in LPS-induced inflammatory environment. Our findings demonstrated that LIF aggravates pulpitis by promoting macrophage inflammatory response through a STAT3/p65-dependent pathway. Furthermore, LIF plays a crucial role in driving the recruitment of macrophages to inflamed pulp tissue by promoting chemokine secretion in DPCs.


Assuntos
Pulpite , Animais , Humanos , Camundongos , Polpa Dentária/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Fator Inibidor de Leucemia/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Pulpite/metabolismo
8.
Ecotoxicol Environ Saf ; 270: 115848, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134636

RESUMO

PURPOSE: Prolonged exposure to low dose-rate radiation (LDRR) is of growing concern to public health. Recent evidences indicates that LDRR causes deleterious health effects and is closely related to miRNAs. The aim of our study is to investigate the relationship between miRNAs and DNA damage caused by LDRR. MATERIALS AND METHODS: In this study, we irradiated C57BL/6J mice with 12.5µGy/h dose of γ ray emitted from uranium ore for 8 h a day for 120 days at a total dose of 12 mGy, and identified differentially expressed miRNAs from the mice long-term exposed to LDRR through isolating serum RNAs, constructing small RNA library, Illumina sequencing. To further investigate the role of differential miRNA under LDRR,we first built DNA damage model in Immortal B cells irradiated with 12.5µGy/h dose of γ ray for 28 days at a total dose of 9.4 mGy. Then, we chose the highly conserved miR-181c-3p among 12 miRNA and its mechanism in alleviating DNA damage induced by LDRR was studied by transfection, quantitative PCR, luciferase assay, and Western blot. RESULTS AND CONCLUSIONS: We have found that 12 differentially expressed miRNAs including miR-181c-3p in serum isolated from irradiated mice. Analysis of GO and KEGG indicated that target genes of theses 12 miRNA enriched in pathways related to membrane, protein binding and cancer. Long-term exposure to LDRR induced upregulation of gamma-H2A histone family member X (γ-H2AX) expression, a classical biomarker for DNA damage in B cells. miR-181c-3p inhibited Leukemia inhibitory factor (LIF) expression via combining its 3'UTR. LIF, MDM2, p53, and p-p53-s6 were upregulated after exposure to LDRR. In irradiated B cells, Transfection of miR-181c-3p reduced γ-H2AX expression and suppressed LIF and MDM2 protein levels, whereas p-p53-s6 expression was increased. As expected, the effect of LIF inhibition on irradiated B cells was similar to miR-181c-3p overexpression. Our results suggest that LDRR alters miRNA expression and induces DNA damage. Furthermore, miR-181c-3p can alleviate LDRR-induced DNA damage via the LIF/MDM2/p-p53-s6 pathway in human B lymphocytes. This could provide the basis for prevention and treatment of LDRR injury.


Assuntos
MicroRNAs , Proteína Supressora de Tumor p53 , Humanos , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fator Inibidor de Leucemia/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Linfócitos B
9.
Genes Cells ; 28(12): 868-880, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837427

RESUMO

Primary cilia on neural stem/progenitor cells (NSPCs) play an important role in determining cell fate, although the regulatory mechanisms involved in the ciliogenesis remain largely unknown. In this study, we analyzed the effect of the leukemia inhibitory factor (LIF) for the primary cilia in immortalized human NSPCs. LIF withdrawal elongated the primary cilia length, whereas the addition of LIF shortened it. Microarray gene expression analysis revealed that differentially expressed genes (DEGs) associated with LIF treatment were related with the multiple cytokine signaling pathways. Among the DEGs, C-C motif chemokine 2 (CCL2) had the highest ranking and its increase in the protein concentration in the NSPCs-conditioned medium after the LIF treatment was confirmed by ELISA. Interestingly, we found that CCL2 was a negative regulator of cilium length, and LIF-induced shortening of primary cilia was antagonized by CCL2-specific antibody, suggesting that LIF could influence cilia length via upregulating CCL2. The shortening effect of LIF and CCL2 on primary cilia was also observed in SH-SY5Y cells. The results of the study suggested that the LIF-CCL2 axis may well be a regulator of NSPCs and its primary cilia length, which could affect multiple cellular processes, including NSPC proliferation and differentiation.


Assuntos
Células-Tronco Neurais , Neuroblastoma , Humanos , Cílios/metabolismo , Transdução de Sinais , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/farmacologia , Células-Tronco Neurais/metabolismo , Diferenciação Celular/fisiologia
10.
Cell Mol Life Sci ; 80(9): 256, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589744

RESUMO

BACKGROUND: Increasing evidences has indicated that primary and acquired resistance of ovarian cancer (OC) to platinum is mediated by multiple molecular and cellular factors. Understanding these mechanisms could promote the therapeutic efficiency for patients with OC. METHODS: Here, we screened the expression pattern of circRNAs in samples derived from platinum-resistant and platinum-sensitive OC patients using RNA-sequencing (RNA-seq). The expression of hsa_circ_0010467 was validated by Sanger sequencing, RT-qPCR, and fluorescence in situ hybridization (FISH) assays. Overexpression and knockdown experiments were performed to explore the function of hsa_circ_0010467. The effects of hsa_circ_0010467 on enhancing platinum treatment were validated in OC cells, mouse model and patient-derived organoid (PDO). RNA pull-down, RNA immunoprecipitation (RIP), and dual-luciferase reporter assays were performed to investigate the interaction between hsa_circ_0010467 and proteins. RESULTS: Increased expression of hsa_circ_0010467 is observed in platinum-resistant OC cells, tissues and serum exosomes, which is positively correlated with advanced tumor stage and poor prognosis of OC patients. Hsa_circ_0010467 is found to maintain the platinum resistance via inducing tumor cell stemness, and silencing hsa_circ_0010467 substantially increases the efficacy of platinum treatment on inhibiting OC cell proliferation. Further investigation reveals that hsa_circ_0010467 acts as a miR-637 sponge to mediate the repressive effect of miR-637 on leukemia inhibitory factor (LIF) and activates the LIF/STAT3 signaling pathway. We further discover that AUF1 could promote the biogenesis of hsa_circ_0010467 in OC. CONCLUSION: Our study uncovers the mechanism that hsa_circ_0010467 mediates the platinum resistance of OC through AUF1/hsa_circ_0010467/miR-637/LIF/STAT3 axis, and provides potential targets for the treatment of platinum-resistant OC patients.


Assuntos
Ribonucleoproteína Nuclear Heterogênea D0 , MicroRNAs , Neoplasias Ovarianas , RNA Circular , Animais , Feminino , Humanos , Camundongos , Hibridização in Situ Fluorescente , Fator Inibidor de Leucemia , MicroRNAs/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , RNA Circular/genética , Fator de Transcrição STAT3/genética , Ribonucleoproteína Nuclear Heterogênea D0/genética
11.
Sci Adv ; 9(29): eadh0102, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37478173

RESUMO

Vascular cognitive impairment (VCI) refers to cognitive alterations caused by vascular disease, which is associated with various types of dementia. Because chronic cerebral hypoperfusion (CCH) induces VCI, we used bilateral common carotid artery stenosis (BCAS) mice as a CCH-induced VCI model. Transient receptor potential ankyrin 1 (TRPA1), the most redox-sensitive TRP channel, is functionally expressed in the brain. Here, we investigated the pathophysiological role of TRPA1 in CCH-induced VCI. During early-stage CCH, cognitive impairment and white matter injury were induced by BCAS in TRPA1-knockout but not wild-type mice. TRPA1 stimulation with cinnamaldehyde ameliorated BCAS-induced outcomes. RNA sequencing analysis revealed that BCAS increased leukemia inhibitory factor (LIF) in astrocytes. Moreover, hydrogen peroxide-treated TRPA1-stimulated primary astrocyte cultures expressed LIF, and culture medium derived from these cells promoted oligodendrocyte precursor cell myelination. Overall, TRPA1 in astrocytes prevents CCH-induced VCI through LIF production. Therefore, TRPA1 stimulation may be a promising therapeutic approach for VCI.


Assuntos
Isquemia Encefálica , Disfunção Cognitiva , Canais de Potencial de Receptor Transitório , Substância Branca , Camundongos , Animais , Astrócitos , Canal de Cátion TRPA1/genética , Fator Inibidor de Leucemia/farmacologia , Disfunção Cognitiva/complicações , Isquemia Encefálica/complicações , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
12.
Reprod Sci ; 30(10): 3084-3091, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37126206

RESUMO

Kisspeptin (KP) is a group of hypothalamic neuropeptides encoded by KISS-1 gene. KP-54, a 54-amino-acid peptide, helps regulate the hypothalamic-pituitary-ovarian axis and plays a potential role in implantation. C57BL/6 J female mice were superovulated via intraperitoneal injection of 5 International Units (IU) pregnant mare serum gonadotrophin (day 1). Forty-eight hours later, mice (5/group) were injected with phosphate-buffered saline (PBS) (group A), 5 IU human chorionic gonadotrophin (hCG) (group B), or 3 nmol KP-54 (group C). On day 7, mice were euthanized and uteri excised to create paraformaldehyde-fixed paraffin-embedded sections that were immunostained for the implantation markers: leukemia inhibitory factor (LIF) and integrin αVß3 (ITG αVß3). Slides were scored for intensity of staining in endometrial glandular epithelium (GE) and stromal cells (SCs) via histoscore (H-score). Data were analyzed using the Kruskal-Wallis test followed by the Mann-Whitney U test for pairwise comparisons. LIF expression was significantly higher in GE and SCs of mice triggered with KP-54 compared to placebo (P = .009 for both), but only higher than hCG trigger group in SCs (P = .009). Meanwhile, ITG αVß3 expression was significantly higher in SCs of mice triggered with KP-54 compared to placebo (P = .028). In conclusion, using KP-54 as an ovulation trigger resulted in higher expression of the implantation markers LIF and ITG αVß3 in mice endometrium compared to hCG or placebo. This suggests a potential role for KP-54 trigger in improving embryo implantation in clinical IVF. However, further studies are needed to correlate these results with clinical implantation rates and pregnancy outcomes.


Assuntos
Integrina alfaVbeta3 , Kisspeptinas , Gravidez , Feminino , Animais , Cavalos , Camundongos , Humanos , Integrina alfaVbeta3/metabolismo , Kisspeptinas/metabolismo , Fator Inibidor de Leucemia/metabolismo , Imuno-Histoquímica , Indução da Ovulação/métodos , Camundongos Endogâmicos C57BL , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Ovulação , Gonadotropina Coriônica/farmacologia , Gonadotropina Coriônica/metabolismo
13.
PLoS Biol ; 21(5): e3001746, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37134077

RESUMO

Extramedullary hematopoiesis (EMH) expands hematopoietic capacity outside of the bone marrow in response to inflammatory conditions, including infections and cancer. Because of its inducible nature, EMH offers a unique opportunity to study the interaction between hematopoietic stem and progenitor cells (HSPCs) and their niche. In cancer patients, the spleen frequently serves as an EMH organ and provides myeloid cells that may worsen pathology. Here, we examined the relationship between HSPCs and their splenic niche in EMH in a mouse breast cancer model. We identify tumor produced IL-1α and leukemia inhibitory factor (LIF) acting on splenic HSPCs and splenic niche cells, respectively. IL-1α induced TNFα expression in splenic HSPCs, which then activated splenic niche activity, while LIF induced proliferation of splenic niche cells. IL-1α and LIF display cooperative effects in activating EMH and are both up-regulated in some human cancers. Together, these data expand avenues for developing niche-directed therapies and further exploring EMH accompanying inflammatory pathologies like cancer.


Assuntos
Doenças Hematológicas , Hematopoese Extramedular , Neoplasias , Humanos , Animais , Camundongos , Hematopoese Extramedular/fisiologia , Fator Inibidor de Leucemia/farmacologia , Interleucina-1alfa/farmacologia , Hematopoese
14.
PLoS Biol ; 21(5): e3002104, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141182

RESUMO

Tumors protect themselves from immune clearance by promoting extramedullary hematopoiesis. A new study in PLOS Biology provides insights into the mechanisms underlying this process, which may hold the key to disrupting generation of the immunosuppressive tumor microenvironment.


Assuntos
Doenças Hematológicas , Hematopoese Extramedular , Neoplasias , Humanos , Fator Inibidor de Leucemia , Interleucina-1alfa , Hematopoese , Microambiente Tumoral
15.
Stem Cells Dev ; 32(15-16): 434-449, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37183401

RESUMO

The ShcA adapter protein is necessary for early embryonic development. The role of ShcA in development is primarily attributed to its 52 and 46 kDa isoforms that transduce receptor tyrosine kinase signaling through the extracellular signal regulated kinase (ERK). During embryogenesis, ERK acts as the primary signaling effector, driving fate acquisition and germ layer specification. P66Shc, the largest of the ShcA isoforms, has been observed to antagonize ERK in several contexts; however, its role during embryonic development remains poorly understood. We hypothesized that p66Shc could act as a negative regulator of ERK activity during embryonic development, antagonizing early lineage commitment. To explore the role of p66Shc in stem cell self-renewal and differentiation, we created a p66Shc knockout murine embryonic stem cell (mESC) line. Deletion of p66Shc enhanced basal ERK activity, but surprisingly, instead of inducing mESC differentiation, loss of p66Shc enhanced the expression of core and naive pluripotency markers. Using pharmacologic inhibitors to interrogate potential signaling mechanisms, we discovered that p66Shc deletion permits the self-renewal of naive mESCs in the absence of conventional growth factors, by increasing their responsiveness to leukemia inhibitory factor (LIF). We discovered that loss of p66Shc enhanced not only increased ERK phosphorylation but also increased phosphorylation of Signal transducer and activator of transcription in mESCs, which may be acting to stabilize their naive-like identity, desensitizing them to ERK-mediated differentiation cues. These findings identify p66Shc as a regulator of both LIF-mediated ESC pluripotency and of signaling cascades that initiate postimplantation embryonic development and ESC commitment.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Células-Tronco Embrionárias Murinas , Animais , Camundongos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/farmacologia , Fator Inibidor de Leucemia/metabolismo , Diferenciação Celular , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
16.
J Endocrinol ; 258(1)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37078922

RESUMO

Leukaemia inhibitory factor (LIF) is a cytokine belonging to the interleukin-6 family that is important at the reproductive level in the uterine implantation process. However, there is very little evidence regarding its effect at the ovarian level. The aim of this work was to study the local involvement of the LIF/LIFRß system in follicular development and steroidogenesis in rat ovaries. To carry out this research, LIF/LIFR/GP130 transcript and protein levels were measured in fertile and sub-fertile rat ovaries, and in vitro experiments were performed to assess STAT3 activation. Then, in in vivo experiments, LIF was administered chronically and locally for 28 days to the ovaries of rats by means of an osmotic minipump to enable us to evaluate the effect on folliculogenesis and steroidogenesis. It was determined by quantitative polymerase chain reaction and western blot that LIF and its receptors are present in fertile and sub-fertile ovaries and that LIF varies during the oestrous cycle, being higher during the oestrus and meta/dioestrus stages. In addition to this, it was found that LIF can activate STAT3 pathways and cause pSTAT3 formation. It was also observed that LIF decreases the number and size of preantral and antral follicles without altering the number of atretic antral follicles and can increase the number of corpora lutea, with a notable increase in the levels of progesterone (P4). It is therefore possible to infer that LIF exerts an important effect in vivo on folliculogenesis, ovulation and steroidogenesis, specifically the synthesis of P4.


Assuntos
Folículo Ovariano , Ovário , Feminino , Ratos , Animais , Fator Inibidor de Leucemia/farmacologia , Corpo Lúteo , Ovulação
17.
Expert Opin Investig Drugs ; 32(5): 387-399, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37092893

RESUMO

INTRODUCTION: The Leukemia Inhibitory Factor (LIF) is a member of the interleukin-6 (IL-6) cytokine family. Known to induce differentiation of myeloid leukemia cells, evidence has accumulated supporting its role in cancer evolution through regulating cell differentiation, renewal, and survival. LIF has recently emerged as a biomarker and therapeutic target for pancreatic ductal adenocarcinoma (PDAC). The first in-human clinical trial has shown promising safety profile and has suggested a potential role for LIF inhibitor in combination regimen. AREAS COVERED: Herein, we summarize, discuss, and give an expert opinion on the role of LIF in PDAC promotion, and its potential role as a biomarker and target of anti-cancer therapy. We conducted an exhaustive PubMed search for English-language articles published from 1 January 1970, to 1 August 2022. EXPERT OPINION: PDAC carries a devastating prognosis for patients, highlighting the need for advancing drug development. The results of the phase 1 trial with MSC-1 demonstrated tolerability and safety but modest efficacy. Future research should focus on investigating LIF targets in combination with current standard-of-care chemotherapy, and immunotherapy can be a promising approach. Further, larger multicenter clinical trials are needed to define the use of LIF as a new biomarker in PDAC patients.


Assuntos
Adenocarcinoma , Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Fator Inibidor de Leucemia/uso terapêutico , Adenocarcinoma/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Antineoplásicos/farmacologia , Biomarcadores , Estudos Multicêntricos como Assunto , Neoplasias Pancreáticas
18.
Front Immunol ; 14: 1089098, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033980

RESUMO

Endometriosis is an estrogen dominant, chronic inflammatory disease characterized by the growth of endometrial-like tissue outside of the uterus. The most common symptoms experienced by patients include manifestations of chronic pelvic pain- such as pain with urination, menstruation, or defecation, and infertility. Alterations to Leukemia Inhibitory Factor (LIF), a cytokine produced by the luminal and glandular epithelium of the endometrium that is imperative for successful pregnancy, have been postulated to contribute to infertility. Conditions such as recurrent implantation failure, unexplained infertility, and infertility associated diseases such as adenomyosis and endometriosis, have demonstrated reduced LIF production in the endometrium of infertile patients compared to fertile counterparts. While this highlights the potential involvement of LIF in infertility, LIF is a multifaceted cytokine which plays additional roles in the maintenance of cell stemness and immunomodulation. Thus, we sought to explore the implications of LIF production within ectopic lesions on endometriosis pathophysiology. Through immunohistochemistry of an endometrioma tissue microarray and ELISA of tissue protein extract and peritoneal fluid samples, we identify LIF protein expression in the ectopic lesion microenvironment. Targeted RT qPCR for LIF and associated signaling transcripts, identify LIF to be significantly downregulated in the ectopic tissue compared to eutopic and control while its receptor, LIFR, is upregulated, highlighting a discordance in ectopic protein and mRNA LIF expression. In vitro treatment of endometriosis representative cell lines (12Z and hESC) with LIF increased production of immune-recruiting cytokines (MCP-1, MCP-3) and the angiogenic factor, VEGF, as well as stimulated tube formation in human umbilical vein endothelial cells (HUVECs). Finally, LIF treatment in a syngeneic mouse model of endometriosis induced both local and peripheral alterations to immune cell phenotypes, ultimately reducing immunoregulatory CD206+ small peritoneal macrophages and T regulatory cells. These findings suggest that LIF is present in the ectopic lesions of endometriosis patients and could be contributing to lesion vascularization and immunomodulation.


Assuntos
Endometriose , Infertilidade Feminina , Gravidez , Feminino , Animais , Camundongos , Humanos , Endometriose/patologia , Fator Inibidor de Leucemia/metabolismo , Células Endoteliais/metabolismo , Endométrio
19.
Lab Invest ; 103(3): 100026, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36925206

RESUMO

Repeated implantation failure is a major cause of infertility among healthy women. Uterine ß-catenin (CTNNB1) plays a critical role in implantation. However, the role of embryonic CTNNB1 during implantation remains unclear. We addressed this topic by analyzing mice carrying Ctnnb1-deficient (Ctnnb1Δ/Δ) embryos. Ctnnb1Δ/Δ embryos were produced by intercrossing mice bearing Ctnnb1-deficient eggs and sperms. We found that Ctnnb1Δ/Δ embryos developed to the blastocyst stage; thereafter, they were resorbed, leaving empty decidual capsules. Moreover, leukemia inhibitory factor, a uterine factor essential for implantation, was undetectable in Ctnnb1Δ/Δ blastocysts. Furthermore, CDX2, a transcription factor that determines the fate of trophectoderm cells, was not observed in Ctnnb1Δ/Δ blastocysts. Intrauterine injection with uterine fluids (from control mice) and recombinant mouse leukemia inhibitory factor proteins rescued the uterine response to Ctnnb1Δ/Δ blastocysts. These results suggest that embryonic CTNNB1 is required for the secretion of blastocyst-derived factor(s) that open the implantation window, indicating that the uterine response to implantation can be induced using supplemental materials. Therefore, our results may contribute to the discovery of a similar mechanism in humans, leading to a better understanding of the pathogenesis of repeated implantation failure.


Assuntos
Implantação do Embrião , beta Catenina , Animais , Feminino , Humanos , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Blastocisto/metabolismo , Implantação do Embrião/fisiologia , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Útero/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-36924393

RESUMO

OBJECTIVE OF THE STUDY: To explore the association of leukemia inhibitory factor receptor (LIFR) gene variant rs3099124, ovarian steroids, and leukemia inhibitory factor with unexplained infertility in Pakistani females. METHODOLOGY: A case-control investigation in which eighty-one (81) females with unexplained infertility and one hundred and sixty-two (162) fertile counterparts (age and body mass index compared) were recruited between October 2016 and 2018. Ten milliliters of venous blood was collected from all participants. "Genomic DNA" was taken out from lymphocytes in peripheral blood samples. "Tetra Amplification Refractory Mutation System Polymerase Chain Reaction (T-ARMS-PCR)" was constructed through software "Primer-I". Amplification was carried out by "T-ARMS-PCR" followed by subsequent sequencing for confirmation and extensive consonance. Estradiol, Progesterone and Leukemia Inhibitory Factor (LIF) were measured in serum by ELISA. RESULTS: Statistically significant difference was noticed in genotype frequency in "LIFR-gene variant; rs3099124" (χ2 = 28.222, P value < 0.01) between research participants. Although, rs "3099124" "AA" (OR = 0.000; 95%CI = 0-0) and "GA" genotypes (OR = 0.525; 95%CI = 0.226-1.22) showed non-significant safety/protection against unexplained infertility yet minor/risk allele "A" frequency was greater in women with unexplained infertility suggesting a possible explanation of implantation failure. LIF concentration varied between fertile and infertile groups (χ2 = 9.857, P < 0.05) revealing significant threat of unexplained infertility in women with decreased LIF concentration (OR = 2.316, 95%CI = 1.214-4.416). Progesterone was significantly related to unexplained infertility in both study groups (χ2 = 20.347, P < 0.05). High progesterone reduced the possibility of unexplained infertility (OR = 0.306; 95% CI = 0.166-0.567). CONCLUSION: LIFR gene variation (rs3099124) and reduced LIF secretion may cause implantation failure in women with unexplained infertility.


Assuntos
Infertilidade Feminina , Feminino , Humanos , Masculino , Infertilidade Feminina/genética , Progesterona , Fator Inibidor de Leucemia/genética , Endométrio , Receptores de OSM-LIF
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...